26 research outputs found

    Yaw Rate and Sideslip Angle Control Through Single Input Single Output Direct Yaw Moment Control

    Get PDF
    Electric vehicles with independently controlled drivetrains allow torque vectoring, which enhances active safety and handling qualities. This article proposes an approach for the concurrent control of yaw rate and sideslip angle based on a single-input single-output (SISO) yaw rate controller. With the SISO formulation, the reference yaw rate is first defined according to the vehicle handling requirements and is then corrected based on the actual sideslip angle. The sideslip angle contribution guarantees a prompt corrective action in critical situations such as incipient vehicle oversteer during limit cornering in low tire-road friction conditions. A design methodology in the frequency domain is discussed, including stability analysis based on the theory of switched linear systems. The performance of the control structure is assessed via: 1) phase-plane plots obtained with a nonlinear vehicle model; 2) simulations with an experimentally validated model, including multiple feedback control structures; and 3) experimental tests on an electric vehicle demonstrator along step steer maneuvers with purposely induced and controlled vehicle drift. Results show that the SISO controller allows constraining the sideslip angle within the predetermined thresholds and yields tire-road friction adaptation with all the considered feedback controllers

    Energy-efficient torque-vectoring control of electric vehicles with multiple drivetrains

    Get PDF
    The safety benefits of torque-vectoring control of electric vehicles with multiple drivetrains are well known and extensively discussed in the literature. Also, several authors analyze wheel torque control allocation algorithms for reducing the energy consumption while obtaining the wheel torque demand and reference yaw moment specified by the higher layer of a torque-vectoring controller. Based on a set of novel experimental results, this study demonstrates that further significant energy consumption reductions can be achieved through the appropriate tuning of the reference understeer characteristics. The effects of drivetrain power losses and tire slip power losses are discussed for the case of identical drivetrains at the four vehicle corners. Easily implementable yet effective rule-based algorithms are presented for the set-up of the energy-efficient reference yaw rate, feedforward yaw moment and wheel torque distribution of the torque-vectoring controller

    The effect of the front-to-rear wheel torque distribution on vehicle handling: an experimental assessment

    Get PDF
    The front-to-rear wheel torque distribution influences vehicle handling and, ultimately, affects key factors such as vehicle safety and performance. At a glance, as part of the available tire-road friction is used for traction on the driven axle, a Front-Wheel-Drive (FWD) vehicle would be expected to be more understeering than a Rear-Wheel-Drive (RWD) vehicle with equivalent characteristics. However, in specific conditions such effect may be counter-balanced, or even reversed, by the yaw moment caused by the lateral contribution, in the vehicle reference system, of the traction forces at the front wheels. This paper discusses the experimental assessment of the phenomenon in steady-state cornering, for a fully electric vehicle with multiple motors, allowing different front-to-rear wheel torque distributions. The results confirm that the yaw moment effect of the front traction forces is significant, especially at low vehicle speeds and high lateral accelerations. In particular, in the case study maneuvers, the RWD configuration of the vehicle resulted more understeering than the FWD one at the speed of 30 km/h

    JRC-EU-TIMES 2017 Upgrade: Buildings and heating & cooling technologies

    Get PDF
    The present report describes two main upgrades that have been made to the JRC-EU-TIMES model during the year 2017: • An improvement of the description of residential and non-residential buildings • An update of data and a new representation for heating &cooling and heat distribution technologies The model updates have been validated through tests with the JRC-EU-TIMES model and with stylised models allowing isolating the observed effect of the changed model input. The updates performed greatly improve the ability of the JRC-EU-TIMES model to perform studies options for the decarbonisation of the heating and cooling sector.JRC.C.7-Knowledge for the Energy Unio

    On the Feedback Control of Hitch Angle through Torque-Vectoring

    Get PDF
    This paper describes a torque-vectoring (TV) algorithm for the control of the hitch angle of an articulated vehicle. The hitch angle control function prevents trailer oscillations and instability during extreme cornering maneuvers. The proposed control variable is a weighted combination of terms accounting for the yaw rate, sideslip angle and hitch angle of the articulated vehicle. The novel control variable formulation results in a single-input single-output (SISO) feedback controller. In the specific application a simple proportional integral (PI) controller with gain scheduling on vehicle velocity is developed. The TV system is implemented and experimentally tested on a fully electric vehicle with four on-board drivetrains, towing a single-axle passive trailer. Sinusoidal steer test results show that the proposed algorithm significantly improves the behavior of the articulated vehicle, and justify further research on the topic of hitch angle control through TV

    Review of analytical approaches for the identification of non-intentionally added substances in paper and board food contact materials

    Get PDF
    Background: Food contact materials (FCM) may contain non-intentionally added substances (NIAS) as a result of reaction by-products, oligomers, degradation processes, chemical reactions between packaging materials and foodstuff, or as impurities from the raw materials used for their production. Scope and approach: In this review, current approaches for the detection and identification of NIAS from paper and board FCM are presented. Reviewed are the definition of NIAS, approaches for NIAS identification and quantification, the comprehensive analysis of NIAS and the role of in silico tools and bioassays. Key Findings and Conclusions: NIAS in paper and board are mostly components from printing inks, adhesives, sizing agents and surface coatings. Recycled paper contains overall more NIAS than fresh paper. Targeted analysis is generally performed for predicted NIAS, whereas an untargeted, or full-scan screening method is applied to detect and identify unpredicted NIAS. Sample preparation and contact conditions fall in two categories; migration and extraction. Migration studies are performed with food simulants while extraction studies are Soxhlet or ultrasound assisted solvent extraction. In untargeted analysis in silico tools are gaining importance in the identification of NIAS. Bioassays are used to determine the bioactivity of extracts or fractions in order to assess the potential toxicity of NIAS present in the mixture. A combination of bioassays and chemical analysis is used to direct the identification of unknown bioactive NIAS in complex mixtures like those from paper and board FCM. However, future research is required into the selection of bioassays since these should not only be sensitive enough for detecting all compounds of concern but should also have a relevance with human health.</p

    A new method for fine-scale assessments of the average urban Heat island over large areas and the effectiveness of nature-based solutions

    Get PDF
    People living in cities experience extra heat stress due to the so-called Urban Heat Island (UHI) effect. To gain an insight into the spatial variability of the UHI for the Netherlands, a detailed map (10 m horizontal resolution) has been calculated that shows the summer-averaged daily maximal UHI situation. The map is based on a relationship between the UHI, mean wind speed at 10 m height and the number of people living within a distance of 10 km, derived from simulations of over 100 European cities with the extensively validated urban climate model UrbClim. The cooling effect of green and blue infrastructure is also taken into account in the map, based on these simulation results. The presented map will help local authorities in defining target areas for climate adaptation measures and estimate the impact of nature-based solutions

    How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system

    No full text
    Hydrogen is a promising avenue for decarbonising energy systems and providing flexibility. In this paper, the JRC-EU-TIMES model – a bottom-up, technology-rich model of the EU28 energy system– is used to assess the role of hydrogen in a future decarbonised Europe under two climate scenarios, current policy initiative (CPI) and long-term decarbonisation (CAP). Our results indicate that hydrogen could become a viable option already in 2030 – however, a long-term CO2 cap is needed to sustain the transition. In the CAP scenario, the share of hydrogen in the final energy consumption of the transport and industry sectors reaches 5% and 6% by 2050. Low-carbon production technologies dominate, and electrolysers provide flexibility by absorbing electricity at times of high availability of intermittent sources. Hydrogen could also play a significant role in the industrial and transport sectors, while the emergence of stationary hydrogen fuel cells for hydrogen-to-power would require significant cost improvements, over and above those projected by the experts.JRC.F.6-Energy Technology Policy Outloo

    Trailer control through vehicle yaw moment control: Theoretical analysis and experimental assessment

    Get PDF
    This paper investigates a torque-vectoring formulation for the combined control of the yaw rate and hitch angle of an articulated vehicle through a direct yaw moment generated on the towing car. The formulation is based on a single-input single-output feedback control structure, in which the reference yaw rate for the car is modified when the incipient instability of the trailer is detected with a hitch angle sensor. The design of the hitch angle controller is described, including the gain scheduling as a function of vehicle speed. The controller performance is assessed by means of frequency domain and phase plane analyses, and compared with that of an industrial trailer sway mitigation algorithm. In addition, the novel control strategy is implemented in a high-fidelity articulated vehicle model for robustness assessment, and experimentally tested on an electric vehicle demonstrator with four on-board drivetrains, towing two different conventional single-axle trailers. The results show that: (i) the torque-vectoring controller based only on the yaw rate of the car is not sufficient to mitigate trailer instability in extreme conditions; and (ii) the proposed controller provides safe trailer behaviour during the comprehensive set of manoeuvres, thus justifying the additional hardware complexity associated with the hitch angle measurement
    corecore